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Abstract—In large, distributed systems, such as a sensor
web, allocating resources to tasks that span multiple providers
presents significant challenges. Individual subtasks associated
with a task could potentially be assigned to a number of
agents (e.g., when there is overlap in sensor or data processing
capability among constituent sensor networks). This problem
is further compounded by the dynamic nature of a sensor web,
in which both desired tasks and resource availability change
with time and environmental conditions. This paper presents a
novel variation of the contract net protocol (CNP) for subtask
allocation, which employs brokers to limit communication
overhead in a two-phase CNP and aggregate domain infor-
mation from groups of agents. Experimental results using this
subtask allocation approach verify its efficiency and scalability.
These results also suggest specific refinements and appropriate
parameters for a variety of system configurations and operating
conditions in sensor webs and other large multi-agent systems.

I. INTRODUCTION

The availability of a variety of sensors around the globe

and the ability to quickly make this data available in remote

locations give today’s scientists an unprecedented advantage

in studying and predicting weather, natural disasters, and

climate change. Selecting and coordinating an appropriate

subset of these heterogeneous and distributed sensors for

such large-scale tasks is complex. For example, sensors

must first be located and may have to be reconfigured and

recalibrated to collect the needed data. Moreover, many

complex tasks require the cooperation of multiple compo-

nent sensor networks. Coordination among these distributed

sensor and computational resources is required for efficient

and effective execution of complex tasks.

As illustrated in Figure 1, a sensor web is made up of

many independent sensor networks. One difficulty in task

allocation for a sensor web is that available resources (e.g.,
sensors, servers, bandwidth) are not owned or controlled by

any single entity. Various institutions, governments, and cor-

porations will have the final say on how their resources are

deployed and used. Further, a global sensor web will have

many independent, heterogeneous “users” (e.g., weather

modeling and prediction systems, disaster recognition and

management systems, and scientists) requesting access to,

and control of, the sensor platforms to support their re-

search and analysis activities. A multi-agent system (MAS)

provides a natural approach for distributed, resource-aware

coordination and control in a large-scale system composed

of heterogeneous, independent entities.

Sensor web users may often request allocation of tasks

requiring resources from multiple independent sensor net-

works, each represented by an independent agent. Further,

when the overall task is broken down into subtasks, an indi-

vidual subtask may require resources that could be provided

by multiple agents (e.g., when there is overlap in sensor or

data processing capability between multiple sensor networks

in the sensor web). Consequently, there may be many

combinations of agents capable of executing the overall task,

as represented by the possible subtask allocations, which will

be of varying utility to the requesting agent. This problem

requires an efficient mechanism for achieving a high utility

allocation of subtasks among applicable agents.

This paper presents an empirical study of the performance

of a novel variation of the contract net protocol for allocating

hierarchically-decomposable tasks in a large multi-agent

system. This extension of the contract net protocol employs

brokers to efficiently limit communication overhead while

generating high-utility allocations of subtasks in a two-

phase contract net. First, Section II provides an overview

of the motivating framework for this work and identifies

the challenges in allocating complex tasks in a sensor web.

Next, we outline our approach to efficiently generating a

high-utility subtask allocation with a brokered, two-phase

contract net in Section III. Section IV presents the results

of our experiments in contract net subtask allocation under

a variety of conditions and analyzes those results to verify

the scalability and effectiveness of this approach. We discuss

the implications of these results for real-world multi-agent

systems and provide a comparison to related work in Sec-

tion V. Finally, Section VI presents concluding remarks and

suggests specific extensions for future work.

II. THE MULTI-AGENT ARCHITECTURE FOR

COORDINATED RESPONSIVE OBSERVATIONS

This paper addresses the problem of allocation for

hierarchically-decomposable tasks in the context of large-
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Figure 1. A Global Sensor Web [1]

scale multi-agent systems, in general, and the Multi-
agent Architecture for Coordinated Responsive Observations
(MACRO) platform [2], in particular. MACRO provides a

powerful computational infrastructure for enabling the de-

ployment, configuration, and operation of large sensor webs

that are composed of many constituent sensor networks.

MACRO is divided into a broad, two-level hierarchy of

agents: (1) the mission level, where agents interact with users

to allocate high-level science tasks to sensor net resources

and coordinate to create plans and schedules to achieve

these tasks, and (2) the resource level, where local server

and field agents translate tasks into actions and application

deployments related to configuration and data collection,

analysis, and transmission [2]. In this paper, we focus on the

mission level of MACRO, where user tasks are allocated to

agents with the resources to achieve them.

The MACRO mission level is comprised of user agents,

mission agents, and broker agents. User agents are the

primary providers of high-level tasks to be achieved by the

system. Typically the user agents are interfaces to mission

scientists or wrappers for legacy systems (e.g. weather mod-

eling applications) that can request execution of sensor web

tasks. Each mission agent represents an independent sensor
network and achieves its allocated tasks with the resources

available in its sensor network. Finally, broker agents act

as an intelligent system infrastructure at the mission level,

providing matchmaker services, aggregating relevant domain

information, tracking system performance, and mediating

allocation negotiations [3].

The complex nature of tasks and plans at the mission level

of a sensor web MAS makes hierarchical analysis important

for dealing with this complexity, both for problem/task rep-

resentation by domain experts and for coordinated planning

among multiple agents. MACRO employs a modified im-

plementation of the Task Analysis, Environment Modeling,

and Simulation (TÆMS) [4] language, which provides a

hierarchical task tree representation for multi-agent planning

and scheduling. Further, MACRO incorporates the OGC

SensorML [5] representation of sensors and data processing

with the TÆMS hierarchically decomposable task represen-

tation to provide standardized descriptions of task/subtask

requirements and effects.

Employing a hierarchical decomposition representation of

tasks, such as TÆMS, in a sensor web MAS presents a

significant challenge. TÆMS and similar hierarchical de-

composition structures were primarily designed for systems

built by a single group of designers sharing a conception

of the entire system and its function. In that context, task

decomposition trees can be built with a top-down goal-

oriented structure combined with bottom-up knowledge of
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the functionality available in the system. However, at the

mission level in MACRO, mission agents and their domain

knowledge, including TÆMS task trees, are implemented

by a variety of groups, such as individual organizations

operating sensor networks. The tasks they include are spe-

cific to their individual purposes and capabilities without

full knowledge of related or equivalent tasks throughout

the system. This presents a challenge in combining mission

agent task trees and determining potential decompositions

of requested tasks that require resources of multiple mission

agents. MACRO’s broker-based solution to this challenge is

discussed in Section III.

In MACRO, sensor web tasks are allocated using a modi-

fied Contract Net Protocol (CNP) [6] in order to accommo-

date both fairness and system utility considerations [3]. The

CNP is a widely implemented MAS solution to task/resource

allocation that uses computationally simple, single auctions.

In particular, the CNP and its derivatives can allow effective

allocation of tasks/resources without restricting the criteria

individuals agents can apply to determine their preference

for tasks or bids. This allows significant flexibility in agent

design and is especially important when individual agents

are designed by different parties with varying internal goals

and constraints, as in a sensor web.

The first step in allocating high-level tasks is to determine

which agents are capable of executing part or all of the task.

In the MACRO contract net, broker agents are employed to

provide this matchmaker service. This significantly reduces

the communication required to allocate tasks compared to

the traditional CNP, in which each task announcement is

sent to every agent. This brokered contract net provides

a negotiation framework for task allocation in which user

agents contract with relevant mission agents to achieve tasks.

A major challenge in applying the contract net protocol to

a sensor web MAS is its emphasis on two-party contracts. In

MACRO, a user agent may require the resources of multiple

mission agents to achieve its high-level task. Therefore,

MACRO uses subcontracting, allowing resources of multiple

mission agents to be assigned to a task through a primary

contract and additional subcontracts between mission agents.

However, with multiple possible decompositions of a task,

there may be a large number of mission agents who could be

the primary contractor for the task, and each mission agent

could choose from a variety of subcontractors. If each of

these mission agents announces subtasks and receives bids

before bidding on the task, a great deal of communication

and computation must be performed before each can gener-

ate a complete bid on the task. On the other hand, if each

mission agent bids on the task before soliciting subcontracts,

there is a great deal of uncertainty in the accuracy of

resulting bids. Finding a trade-off between subcontracting

overhead and completeness of bids for decomposable tasks

presents a major challenge for efficient and effective allo-

cation. The MACRO solution approach to this challenge is

detailed in Section III and verified by experimental studies

in Section IV.

III. MACRO APPROACH TO SUBTASK ALLOCATION

MACRO extends the traditional contract net protocol with

broker agents and limited, two-phase contracting to effi-

ciently allocate hierarchically-decomposable tasks. MACRO

employs two types of broker agents to mediate the contract

net negotiations, as illustrated in Figure 2. Although a single

type of broker agent is theoretically sufficient to perform

all necessary services, MACRO divides broker agents into

two tiers based on their specific roles and responsibilities to

simplify system deployment and dynamic modification [3].

One responsibility of MACRO brokers is to provide

an efficient matchmaking/locater service (i.e., determining

agents capable of performing all or part of an announced

task and forwarding messages appropriately). Tier 2 broker

agents cluster mission agents by geographic region and

maintain a directory of sensor and computational capabilities

for the mission agents in their region. The requirements

of an announced task are used by tier 1 broker agents to

forward task announcements to appropriate tier 2 broker

agents, who then relay the announcement to applicable

mission agents. Tier 1 broker agents are also responsible for

assigning system utility values to task announcements taking

into account user agent priority and task importance, as well

as past system performance. Even though user agents and

mission agents may be implemented by parties other than the

system designers, broker valuation of tasks allows the system

to influence the contract net negotiations, and optimize task

allocation for appropriate efficiency and fairness metrics.

Another responsibility of th MACRO brokers is to aggre-

gate domain knowledge across mission agents. Tier 2 bro-

kers aggregate partial task trees from their assigned mission

agents to determine how complex tasks spanning multiple

sensor networks can be decomposed into subtasks, which

can each be performed by individual mission agents. Since

mission agent task trees may be designed independently,

they are enhanced with standardized sensor web information

(OGC SensorML [5]) regarding task/subtask requirements

and effects. This allows MACRO brokers to determine

appropriate join points and overlap between independent

task trees. Tier 1 brokers further aggregate the partial task

trees from Tier 2 brokers, ultimately providing conversion

of high-level user tasks (initially expressed in an anno-

tated SensorML format) to potential subtask decompositions.

This allows MACRO to resolve the challenge, identified in

Section II, of integrating independently-designed task trees

across domains.

Section II also identified the challenge of balancing mes-

sage overhead and bid completeness for efficient, effec-

tive subtask allocation. The MACRO CNP addresses this

challenge by separating initial bidding from final bidding,
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Figure 2. MACRO Contract Net

extending the approach in the two-phase contract net pro-

tocol proposed by Aknine et al. [7]. This variation of the

CNP breaks the contract net negotiations into an initial pre-

commitment phase and a final commitment phase. During

pre-commitment, the task is announced and initial bids are

made, as illustrated by the 1.x steps in Figure 2. The

announcing agent then pre-accepts what it determines to

be the best initial bid, beginning the commitment phase,

illustrated by the 2.x steps. In the MACRO CNP the pre-

accepted agent can then announce subtasks it may not be

able to, or want to, perform. As illustrated in step 2.1.1,

a pre-accepted Mission agent is acting in an announcing

capacity for these subtasks and communicates them to an

assigned Tier 1 Broker, just as the User agent did for

the initial task announcement. After receiving bids on its

announced subtasks, the Mission agent makes a final bid

on the task. This final bid includes relevant information

on subcontracts and better estimates of applicable quality

measures and time-to-completion. The announcing agent can

then accept the final bid or pre-accept a different agent.

MACRO employs this two-phase CNP, including sub-

contracting, to limit subtask negotiations to a subset of

initial bidders. Rather than allowing all potential contractors

for the high-level task to announce subtasks, the MACRO

CNP allows mission agents to announce subtasks only after

receiving a pre-accept from the user agent. Further, by

limiting the number of pre-accepts a user agent can issue for

a given task announcement, the MACRO CNP significantly

reduces the total amount of communication and computation

overhead in the contract net. One goal of the experiments in

Section IV is to determine appropriate cutoffs for the number

of pre-accepts allowed under different system configurations

and operating conditions. Further, these experiments identify

scalability trends for the MACRO pre-commitment subcon-

tracting in terms of the major stress factors related to mission

agent capability overlap and task composition.

IV. SUBTASK ALLOCATION EXPERIMENTS

This section presents the design and results of experiments

that evaluate the performance and scalability of the MACRO

extended contract net protocol for subtask allocation under

a variety of different potential system configurations and

operating conditions. This experimental study of perfor-

mance with randomly-generated tasks allows us to determine

realistic scalability trends and determine appropriate pre-

accept cutoffs for real-world applications. These experiments

validate our claims in Section III that the MACRO extended

contract net, with appropriate pre-accept cutoffs, provides

an efficient, scalable solution to the challenges of allocating

hierarchically-decomposable tasks in a sensor web or similar

large multi-agent system. We determine reasonable limits

on the number of pre-accepts required to find the best final

bid under a variety of potential system configurations and

conditions. Further, we identify scalability trends for the

major factors affecting subtask allocation: 1) mission agent

capability overlap (defined as a density equal to the average

number of mission agents capable of performing requested

subtasks), 2) number of alternative decompositions per task,

and 3) number of subtasks per task decomposition.

A. Experimental Design

To maintain the generality of our results and their applica-

bility to other large-scale multi-agent systems, we employed

a simplified representation of subtasks and mission agent

capabilities. Specifically, each subtask is randomly generated

in a generic XY plane, and each mission agent is capable

of achieving subtasks in a square region within that plane.

In this setup, the overlap in capabilities across agents is

defined by their overlapping geographic regions. However,

this simple representation allows our results to be easily
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extended to other applications where capabilities are signif-

icantly more complex and even unrelated to geography, as

long as some estimate of capability overlap or density (i.e.,
the average number of agents capable of requested subtasks

in the system) can be determined. In this experiment, 200

mission agents were grouped into regions of 4 agents with

overlapping capabilities. Each group of 4 mission agents was

assigned to a tier 2 broker for a total of 50 tier 2 brokers.

We also use a simplified representation of bid charac-

teristics, rather than explicitly model the large range of

utility functions a user agent could apply to bids. The

experiments employ a single, randomly generated, quality

value for each subtask based on the mission agent contracted

or subcontracted to perform the subtask. In general, mission

agents may be unaware of how the user agent determines

bid utility from individual bid characteristics. Therefore a

single quality value for each subtask suffices to represent the

combined characteristics for that subtask in this experiment.

Because mission agents can include multiple possible task

decompositions and subcontractors in their bids, the user

agent can, in general, choose the one with the highest utility

in any given bid.

In each trial, a single user agent and tier 1 broker agent

were used to randomly generate a task and its decomposition

into subtasks. With the MACRO brokers’ ability to aggregate

task trees, any task can be decomposed into one or more

sets of subtasks, where each subtask can be achieved by

at least one mission agent. Therefore, each task in this

experiment had a corresponding set of randomly generated

decompositions with a variable number of subtasks.

To determine pre-accept limits applicable to a variety

of systems, we take a plausibly worst case approach in

setting static experimental parameters. For example, in a

real system, the different possible decompositions of a task

would likely include some of the same subtasks or, at least,

many subtasks that could be performed by the same agents.

Instead, this experiment considers a worst case scenario

where decompositions are completely uncorrelated by in-

dependently generating random subtasks for each decom-

position. Similarly, subtasks are generated randomly over

the range of mission agent capabilities, while a real-world

system would likely exhibit greater clustering of subtasks

based on geographic location and sensor types. The quality

values for subtask bids are generated in the uniform, random

range of 1 to 100, which is far more variability in quality

than is likely in most systems. Also, all agents capable of

performing a subtask bid on the subtask. This results in more

messages than in most systems where agents may not be

interested in all subtask announcements or may have already

committed the requisite resources to another task.

Further, subtask quality can be aggregated in a variety

of ways to yield overall task quality, such as using the

minimum or maximum value of subtasks (e.g., when quality

is determined by timeliness for a set of parallel subtasks).

In these experiments, user agents employ a sum quality

aggregation function (qaf) to generate the quality of the

task from the subtask qualities. This represents a situation

in which the utility of a task bid to the user agent depends

on the characteristics of each subtask, rather than being de-

termined by a single, limiting subtask, as with the minimum

and maximum aggregation functions. Although they are not

presented due to space constraints, our experiments also

confirmed that the sum qaf was the more difficult parameter

setting, requiring more pre-accepts (and messages) to find

the best bid than the minimum and maximum qafs.

In these experiments, we define performance in terms

of message overhead rather than time overhead because

messages are the major factor in the workload for the system

infrastructure (i.e., broker agents mediating the contract net

negotiations). Sensor webs and similar applications that

deal with many task announcements can face significant

problems due to communication and computation overhead

when allocating each task requires numerous subtask an-

nouncements and bids, as with pre-bid subcontracting. Al-

though the sequential pre-accepts in the proposed algorithm

require more time to allocate a task than with the pre-bid

approach, this provides a disincentive for user agents to

increase system workload by making additional pre-accepts

after they have received an acceptable final bid. While the

increase in time overhead could still be a issue for some

applications, it can be significantly mitigated by a simple

modification to the limited pre-accept contracting approach.

For these applications, the allowed number of pre-accepts

could be performed in parallel rather than sequentially,

and the presented performance and scalability results for

message overhead remain the same.

B. Experimental Results

Each experimental run involved 2000 trials (i.e., 2000

randomly generated tasks). In each trial, the user agent

announced a task through the tier 1 broker. The tier 1 broker

generated task decompositions and passed this information

to the applicable tier 2 brokers, who forwarded the task

announcement and decompositions to the applicable mission

agents.

In the baseline pre-bid subcontracting approach, each

mission agent receiving the task announcement then an-

nounced all subtasks that it could not perform through the

tier 1 broker. In response, it received bids from all other

applicable mission agents for those subtasks. Each mission

agent combined these subtask bids and generated a task bid,

which was forwarded through its tier 2 broker and the tier 1

broker to the user agent. The user agent ranked the complete

bids and chose the one with the highest aggregated quality

value. Because the bids were complete, this agent was pre-

accepted and contracted. These results were compared to the

results with MACRO pre-commitment subcontracting.
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In the pre-commitment subcontracting approach, each

mission agent receiving the task announcement made a pre-

liminary bid, including only the quality values for the sub-

tasks it could perform. The user agent ranked the preliminary

bids by aggregated quality value. Starting with the highest

preliminary bid, it pre-accepted the corresponding mission

agent. The pre-accepted mission agent then announced all

subtasks that it could not perform through the tier 1 broker.

In response, it received bids from all other applicable mis-

sion agents for those subtasks. It combined the subtask bids

and generated a task bid, which was forwarded through its

tier 2 broker and the tier 1 broker to the user agent. The

user agent continued to pre-accept each preliminary bid in

this manner, in order of decreasing quality, to generate the

results presented below.
To illustrate the scalability of the MACRO approach,

we compare the average number of messages required to

reach the best final bid in MACRO pre-commitment sub-

contracting with the messages required in the baseline pre-

bid subcontracting. These results are presented in Figures 3,

4, and 5. In each figure, the circle data points indicate pre-

commitment subcontracting and the square data points are

the result of pre-bid subcontracting. The 95% confidence

interval is shown for each data point, although it is smaller

than the data point marker in many cases.

Figure 3. Average messages to best final bid vs. density

The appropriate cutoff for allowed number of pre-accepts

depends on the configuration and requirements of the sys-

tem. For example, the cutoff may be determined based on the

desired percentage of tasks that must reach the best final bid.

Consequently, this percentage also determines how many

messages will be required, on average, in MACRO pre-

commitment subcontracting with limited pre-accepts. For

a given percentage of trials/tasks to reach the best final

bid, the resulting cutoff requires an average number of

messages closely correlated with the average number of

messages required to reach the best final bid. Therefore,

the pre-commitment subcontracting is illustrated by this

average number of messages in Figures 3, 4, and 5. Table I

provides specific pre-accept cutoff values for at least 75%

of trials reaching the best final bid. These results cover a

large range of potential system configurations/conditions and

illustrate the dramatic reduction of messages in MACRO

pre-commitment subcontracting compared to the pre-bid

approach.
Figure 3 illustrates the scalability of MACRO pre-

commitment subcontracting in terms of mission agent den-

sity/overlap. The average number of messages scales linearly

with mission agent density. These results were generated

with 2-6 (average 4) decompositions per task and 2-6

(average 4) subtasks per decomposition. In comparison, the

pre-bid subcontracting approach required an average number

of messages that increased with mission agent density to

a power of 1.6, for the same parameter settings. For the

highest mission agent density of 4.0, pre-bid subcontracting

required nearly 10 times the messages of pre-commitment

subcontracting.

Figure 4. Avg messages to best final bid vs. decompositions

Figure 4 illustrates the scalability of MACRO pre-

commitment subcontracting in terms of decompositions per

task. The average number of messages scales slightly less

than linearly (to the power of 0.8) with the number of

decompositions per task. These results were generated with

a mission agent density of 1.5 and 2-6 (average 4) subtasks

per decomposition. The pre-bid subcontracting approach, on

the other hand, scaled linearly in terms of decompositions

per task. For the highest decompositions of 12, pre-bid

subcontracting required over 5 times the messages of pre-

commitment subcontracting.
Figure 5 illustrates the scalability of MACRO pre-

commitment subcontracting in terms of subtasks per task

decomposition. The average number of messages scales

slightly worse than linearly (to the power of 1.2) with num-

ber of subtasks. These results were generated with a mission

agent density of 1.5 and 2-6 (average 4) decompositions

per task. In comparison, the pre-bid subcontracting approach

required an average number of messages that increased with

mission agent density to a power of 2.0. For the highest

subtasks of 12, pre-bid subcontracting required over 10 times

the messages of pre-commitment subcontracting.

230230



Pre-Bid To 75% Cutoff
Density Decompositions Subtasks Messages Pre-Accepts Messages

1.50 1-3 1-3 113 (84) 1 41 (20)
1.50 1-3 4-6 606 (326) 2 140 (41)
1.50 1-3 7-9 1505 (728) 2 226 (58)
1.50 4-6 1-3 276 (117) 3 109 (29)
1.50 4-6 4-6 1494 (408) 3 277 (47)
1.50 4-6 7-9 3714 (840) 4 520 (81)
2.00 1-3 1-3 168 (132) 1 51 (25)
2.00 1-3 4-6 956 (523) 2 172 (51)
2.00 1-3 7-9 2411 (1197) 2 282 (76)
2.00 4-6 1-3 414 (187) 3 136 (38)
2.00 4-6 4-6 2369 (673) 4 400 (72)
2.00 4-6 7-9 5988 (1381) 5 756 (129)

Table I
SUBTASK ALLOCATION RESULTS (2000 TRIALS EACH)

Figure 5. Average messages to best final bid vs. subtasks

V. DISCUSSION AND RELATED WORK

The results presented in Section IV show that the MACRO

limited pre-commitment subcontracting approach scales sig-

nificantly better than the pre-bid subcontracting approach,

and that the number of subtasks is the largest stress factor

in terms of scalability. Further, the required number of

messages to reach the best final bid in pre-commitment

subcontracting are on the order of five times fewer than

pre-bid subcontracting for likely sensor web system con-

figurations and operating conditions. Considering that each

trial illustrates subcontracting of a single task, the number

of messages required for pre-commitment subcontracting

(e.g. 50 to 200 for likely scenarios) are still higher than

would be desired. This point is mitigated by the fact that

these numbers were determined with plausibly worst case

settings of static experimental parameters (e.g., uncorrelated

subtasks and task decompositions, all capable agents bidding

on task/subtask announcements, and a large range of subtask

quality with the application of “sum” quality aggregation

function) and by the increasingly low latency and high

bandwidth connections available to agents communicating

over the internet.

Despite these mitigating factors, the large number of tasks

likely to be announced in a global sensor web suggests

that further reduction in subcontracting message overhead

would be worthwhile in sensor web task allocation. In future

work, we intend to include dynamic adjustment of pre-

accept cutoff values based on announced task and current

configuration/conditions, as well as caching of subtask bids

by broker agents, to decrease the number of messages

required. Further, we will explore allowing user agents

to include information on the utility of specific bid qual-

ity criteria to yield smaller, more directed, mission agent

bids. These extensions should further diminish the message

overhead required in pre-commitment subcontracting, while

maintaining the scalability of this approach.

The MACRO approach to allocation of hierarchically-

decomposable tasks builds upon, and goes beyond, a sig-

nificant body of related work. The general problem of

“task allocation” has been dealt with in MASs through a

variety of techniques suitable to a range of applications,

including the Contract Net Protocol (CNP) [6]. A num-

ber of extensions to the classic CNP have been proposed

to increase performance and handle additional problems

presented by various domains. One difficulty in using the

classic CNP for sensor web task allocation is that subtasks

are interdependent. Sandholm recognized the problem of

dependencies between tasks and suggested grouping of tasks

in announcements and bidding [8]. However, this solution is

insufficient for a global sensor web, in which potential task

decompositions are unknown to the user agents announcing

tasks. A related approach is to organize agents interested

in dependent subtasks into teams. For example, Sims et

al. apply bottom-up formation of teams based on marginal

utilities to achieve efficient resource coverage in bidding on

interdependent tasks/subtasks [9]. However, this approach

assumes that many resources are equivalent for a given task,

which is often not the case in a global sensor web.

Another significant difference in some variations of the

CNP is the determination of when contractors commit to

a bid [10]. One solution is to allow bidding on multiple
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tasks requiring the same resource, plus a conflict resolution

stage [11]. Another, more popular solution that can help

alleviate the problem of when to bid, is to allow decom-

mitment from contracts [12]–[14]. One approach that is

suitable for a variety of applications is to separate initial

bidding from commitment (e.g., [7], [15], [16], either with

or without decommitments. MACRO employs this approach

by extending the two-phase CNP suggested by Aknine et

al. [7]. In MACRO, this two-phase CNP is extended with

subcontracting during the commitment phase and the use

of broker agents to limit the allowed number of pre-accepts.

Further, MACRO brokers are employed to aggregate domain

information across mission agents and perform preliminary

task decomposition into a set of subtask alternatives.

VI. CONCLUDING REMARKS

In a multi-agent sensor web system, large-scale tasks may

require the resources and capabilities of multiple agents.

Employing hierarchically-decomposable tasks allows system

designers to deal with the complexity of large tasks and

subtasks, but introduces additional challenges for efficient

allocation, particularly when individual subtasks could be

performed by multiple agents. MACRO employs a novel

approach to subtask allocation in a brokered, two-phase

contract net. The presented results of experiments using

the MACRO limited pre-commitment approach verify its

efficiency in terms of scalability and significant reduction in

messages over the baseline pre-bid subcontracting approach.

Further, these results identify a reasonable upper bound on

pre-accept cutoffs for a variety of system configurations and

operating conditions.

The generality of representation in these experiments

ensures that these results can be extended to other systems in

which hierarchically-decomposable tasks must be allocated

to agents with overlapping capabilities. In future work, we

will investigate dynamic pre-accept cutoffs and caching of

subtask bids by broker agents to further reduce message

overhead. We will also explore the use of bid preference

information to reduce final task bid size in MACRO pre-

commitment subcontracting.
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